Eleventh International Workshop on Algebraic and Combinatorial Coding Theory

Nonexistence results for spherical 7-designs

Silvia Boumova, Peter Boyvalenkov, Maya Stoyanova

Pamporovo, BULGARIA, June 16-22, 2008

Silvia Boumova, Peter Boyvalenkov, Maya Stoyanova Nonexistence results for spherical 7-designs

Definition 1. A spherical τ -design $C \subset \mathbb{S}^{n-1}$ is a finite nonempty subset of \mathbb{S}^{n-1} such that for every point $x \in \mathbb{S}^{n-1}$ and for every real polynomial f(t) of degree at most τ , the equality

$$\sum_{\mathbf{y}\in C} f(\langle \mathbf{x}, \mathbf{y} \rangle) = f_0 |C|.$$
(1)

holds, where f_0 is the first coefficient in the expansion $f(t) = \sum_{i=0}^{k} f_i P_i^{(n)}(t)$ in terms of the Gegenbauer polynomials. The number τ is called strength of *C*.

When $x \in C$, (1) becomes

$$\sum_{y \in C \setminus \{x\}} f(\langle t_i(x) \rangle) = f_0 |C| - f(1),$$
(2)

where $t_1(x) \le t_2(x) \le \cdots \le t_{|C|-1}(x)$ are the inner products of $x \in C$ with all other points of C.

- Problem A. Obtain bounds on inner products of spherical *τ*-design C ⊂ Sⁿ⁻¹ for fixed strength *τ*, dimension *n* and cardinality M = |C|.
- Problem B. Decide whether a *τ*-design on Sⁿ⁻¹ of cardinality M = |C| exists for fixed strength *τ*, dimension n and cardinality M.

Denote $B(n, \tau) = \min\{|C| : C \in \mathbb{S}^{n-1} \text{ is a } \tau\text{-design}\}.$

Delsarte-Goethals-Seidel bound, (Geom. Dedicata, 1977)

$$B(n,\tau) \ge D(n,\tau) = \begin{cases} 2\binom{n+k-2}{n-1}, & \text{if } \tau = 2k-1, \\ \binom{n+k-1}{n-1} + \binom{n+k-2}{n-1}, & \text{if } \tau = 2k. \end{cases}$$

Reznick, (Lin. Alg. Appl., 1995)

Constructions of spherical 5-designs in three dimensions for cardinalities 12, 16, 18, and \geq 20.

▶ Bajnok, (Graphs Combin.,1998),(Des. Codes Crypt., 2000) Constructions of 3-designs on Sⁿ⁻¹ with all admissible even cardinalities (i.e. ≥ 2n) and all odd cardinalities greater than or equal to 5n/2 for n ≥ 6, and to 11 for n = 3, 4, and 15 for n = 5.

Fazekas-Levenshtein, (J. Combin. Theory, 1997)

Restrictions on the structure of spherical designs.

Boyvalenkov-Danev-Nikova, (Discr. Comput. Geom., 1998)

Nonexistence results of spherical designs with odd strength and odd |C|.

Complete solution of Problem B for $\tau = 3$ in dimensions n = 4 and 6.

Boumova-Boyvalenkov-Danev, (Europ. J. Combin., 1999)

Necessary Condition: If $C \subset \mathbb{S}^{n-1}$ is a τ -design with odd $\tau = 2e - 1$ and odd |C| then $\rho_0|C| \ge 2$.

Boumova-Boyvalenkov-Danev, (Proc. CTF, 2002)

50 new nonexistence results of spherical 3-designs with odd |C|, such that $\rho_0|C| \ge 2$ and $3 \le n \le 50$.

Complete solution of Problem B for $\tau = 3$ in dimensions n = 9 and 10.

Boumova-Boyvalenkov-Kulina-Stoyanova, (Proc. OCRT, 2007)

42 (out of all possible 42) new nonexistence results of spherical 5-designs with odd |C|, such that $2 \le \rho_0 |C| < 3$ and $5 \le n \le 25$.

► ⇒ $\rho_0|C| \ge 2$ can be replaced by $\rho_0|C| \ge 3$ (for 5-designs in dimensions $5 \le n \le 25$.)

Boumova-Boyvalenkov-Kulina-Stoyanova, (submitted), 2008

35 (out of all possible 47) new nonexistence results of spherical 3-designs with odd |C|, such that $2 \le \rho_0 |C| < 3$, $2\alpha_0^2 - 1 > \alpha_1$ and $3 \le n \le 50$.

Complete solution of Problem B for $\tau = 3$ in dimensions n = 8, 13, 14 and 18.

A table for Problem B for $\tau = 3$ can be found:

http://www.fmi.uni - sofia.bg/algebra/publications/stoyanova/table.html

▶ In this talk: (290 + 18) new nonexistence results for 7-designs in dimensions $n \le 20$.

• Let $C \subset \mathbb{S}^{n-1}$ be a 7-design. Then

$$|C| \ge B(n,7) = 2\binom{n+2}{3} + 1 = \frac{n(n+1)(n+2)}{3} + 1$$

by the Delsarte-Goethals-Seidel bound.

ł

$$\{\alpha_i\}, i = 0, 1, 2, 3, (s = \alpha_3)$$
 roots of
 $(n+4)(2+n)(n^3+6n^2+5n-6|C|)x^4 - n(n^2-1)(n+2)(n+2)x^3 - 9(n+2)(n^3+4n^2+3n-4|C|)x^2 + 3n(n^2-1)(n+2)x+6n^3+18n^2+12n-18|C| = 0.$

$$\rho_0|\mathcal{C}| = -\frac{(1-\alpha_1^2)(1-\alpha_2^2)(1-\alpha_3^2)}{\alpha_0(\alpha_0^2-\alpha_1^2)(\alpha_0^2-\alpha_2^2)(\alpha_0^2-\alpha_3^2)}.$$

- ▶ Lemma 1. (BBD) Let $C ⊂ S^{n-1}$ be a τ -design with odd $\tau = 2e 1$. Then for every point x ∈ C we have $t_1(x) ≤ \alpha_0$ and $t_{|C|-1}(x) ≥ \alpha_{e-1}$. In particular, we have $s(C) ≥ \alpha_{e-1}$. If |C| is odd then there exist a point x ∈ C such that $t_2(x) ≤ \alpha_0$.
- ▶ Lemma 2. (BBD) Let $C ⊂ S^{n-1}$ be a τ -design with odd $\tau = 2e 1$ and odd cardinality |C|. Then there exist three distinct points x, y, z ∈ C such that $t_1(x) = t_1(y)$ and $t_2(x) = t_1(z)$. Moreover, we have $t_{|C|-1}(z) ≥ \max\{\alpha_{e-1}, 2\alpha_0^2 1\}$. In particular, we have $s(C) ≥ \max\{\alpha_{e-1}, 2\alpha_0^2 1\}$.

- ▶ **Theorem 3.** (BBD) If $C \subset \mathbb{S}^{n-1}$ is a τ -design with odd $\tau = 2e 1$ and odd |C| then $\rho_0|C| \ge 2$.
- Notation: U_{τ,i}(x) (respectively L_{τ,i}(x)) for any upper (resp. lower) bound on the inner product t_i(x). When a bound does not depend on x we omit x in the notation.
- ► For example, the first bound from Lemma 1 is $t_1(x) \le U_{\tau,1} = \alpha_0$ and the last bound from Lemma 2 is $t_{|C|-1}(z) \ge L_{\tau,|C|-1}(z) = \max\{\alpha_{e-1}, 2\alpha_0^2 1\}.$

- ▶ Let $C \subset S^{n-1}$ be a 7-design with odd $|C| \ge 2\binom{n+2}{3} + 1$ and $2\alpha_0^2 1 > \alpha_3$.
- ► A special triple of points $x, y, z \in C$ exists. (Lemma 2)
- We focus on the inner products in *I*(*x*) and *I*(*z*), plus a point *u* ∈ *C* such that ⟨*u*, *z*⟩ = *t*₂(*z*).

Bounds:

 $egin{aligned} & L_{7,1}(z) \leq t_1(z), \ & t_2(z) \leq U_{7,2}(z), \ & L_{7,3}(z) \leq t_3(z). \end{aligned}$

- ► Sometimes: $t_1(z) \ge L_{7,1}(z) > U_{7,1}(z) = \alpha_0 \ge t_1(z)$ or $t_2(z) \le U_{7,2}(z) < L_{7,1}(z) \le t_1(z)$. (in cases where $\rho_0|C|$ is close from above to 2).
- ▶ When $U_{7,2}(z) \ge U_{7,1}(z) \ge L_{7,1}(z)$, we consider two cases for the location of $t_2(z)$ with respect to α_0 .

• Case 1. If
$$t_2(z) \in [\alpha_0, U_{7,2}(z)]$$
.

We obtain new upper bound $t_1(z) \le U_{7,1}(z) < \alpha_0$ which can be used for obtaining a contradiction.

If necessary (in a few cases) we organize an iteration procedure.

Sketch of the algorithm

► Case 2. If $t_2(z) \in [t_1(z), \alpha_0]$. For the point $u \in C$: $t_2(z) = \langle z, u \rangle \leq \alpha_0$.

Theorem 3. (BBKS) *There exists a special quadruple* $\{x, y, z, u\} \subset C$ such that $\max\{t_{|C|-2}(z), t_{|C|-2}(x)\} \ge 2\alpha_0^2 - 1.$

In both cases we continue with new bounds $L_{7,3}(z) \le t_3(z)$ and $t_1(z) \le U_{7,1}(z)$ which can be used for obtaining a contradiction.

In some cases we need more careful consideration of the location of some inner products and iteration procedures.

- There are 291 open cases in dimensions 3 ≤ n ≤ 20 with odd |C| such that 2 ≤ ρ₀|C| < 3.</p>
- ▶ In every such case we have $2\alpha_0^2 1 > \alpha_3$, i.e. $t_{|C|-1}(z) \ge L_{3,|C|-1}(z) = 2\alpha_0^2 1$ by Lemma 2.
- ► Applying our algorithm we obtain nonexistence in all cases with only one exception – the case n = 4, |C| = 43.
- ▶ There are 18 cases of nonexistence with $\rho_0 |C| \ge 3$ as well.
- ▶ ⇒ $\rho_0|C| \ge 3$ in dimensions $5 \le n \le 20$ and $\tau = 7$.

Lower bounds on $B_{odd}(n,7)$

n	BDN	BBD	This paper	This paper
			$ ho_0 {\it C} \in [2,3)$	$ ho_{0} \mathcal{C} \geq 3$
3		23	23	
4		43	43	
5	73	75	77	
6	117	119	123	
7	173	177	183	
8		253	261	
9		347	359	
10		463	477	
11		601	619	621
12		765	789	
13		957	985	987
14		1175	1213	1215
15		1427	1471	1475
16		1713	1767	1769
17		2031	2097	2101
18		2393	2467	2473
19		2791	2879	2885
20		3233	3333	3341

THANK YOU FOR YOUR ATTENTION !

Silvia Boumova, Peter Boyvalenkov, Maya Stoyanova Nonexistence results for spherical 7-designs